The agreement of the various concentrations at the highest temperatures strongly suggests that the second virial coefficient is indeed near zero there as well as at room temperature. However, even an unrealistically high second virial coefficient would not be sufficient, at these concentrations, to force a material change in these results. Even if the second virial coefficient at, say, 60 °C were as high as it is at room temperature in 5 M guanidinium chloride $(7.13 \times 10^{-4} \text{ mol cm}^3 \text{ g}^{-2})$, it would increase the molecular weight given in Figure 2 for the sample of highest concentration by less than 6%. To produce a change comparable to the experimental error, a second virial coefficient of $\sim 14 \times 10^{-4}$ mol cm³ g⁻²—an unheard of value would be required. The assumption that the second virial coefficient can be ignored over the entire temperature range is clearly justified.

The hatched band drawn on Figure 2 shows the previously published (Figure 7 of ref 16) prediction of weightaverage aggregation number made from a statistical mechanical theory of the helix-coil transition; this prediction is shown as corrected for mass action to the concentration range of our light scattering experiments. Although recent advances in the theory^{31–33} make it unwise to make a detailed comparison of our data with this relatively unsophisticated earlier version, it seems safe to say that the principal qualitative theoretical prediction—that loss of helix content and chain dissociation go hand-in-hand—is strikingly borne out. This close linkage is by no means generally accepted at present; at least two laboratories much concerned with these matters would center the dissociation at rather higher temperature than the loss of helix. 13,19 Whether the present data are compatible in more quantitative detail with the current, more sophisticated form of the theory remains to be seen. In any event, we now have two independent physical characteristics of the transition, helix content and weight-average aggregation number, to guide our understanding.

Acknowledgment. Gratitude is hereby expressed to the Japan Society for Promotion of Science, whose award to A.H. of a Fellowship for Research in Japan made this collaboration possible. The hospitality of Nagoya University and of the Nagasawa Coza is also acknowledged.

Part of this work was also supported by Grant No. GM-20064 from the Division of General Medical Sciences, U.S. Public Health Service.

References and Notes

- (1) Fraser, R.; MacRae, T. "Conformation in Fibrous Proteins"; Academic Press: New York, 1973; pp 419-468. Cohen, C.; Szent-Györgyi, A. G. J. Am. Chem. Soc. 1957, 79,
- 248
- Noelken, M. Ph.D. Thesis, Washington University, 1962.
- Noelken, M.; Holtzer, A. In "Biochemistry of Muscle Contraction"; Gergely, J., Ed.; Little, Brown and Co.: Boston, 1964; pp 374-378.
- Holtzer, A.; Clark, R.; Lowey, S. Biochemistry 1965, 4, 2401-2411.
- Olander, J.; Emerson, M.; Holtzer, A. J. Am. Chem. Soc. 1967,
- Olander, J. Biochemistry 1971, 10, 601-609.
- Woods, E. F. Int. J. Protein Res. 1969, 1, 29-43.
- Pont, M.; Woods, E. F. Int. J. Protein Res. 1971, 3, 177-183.
- (10) Woods, E. F. Aust. J. Biol. Sci. 1976, 29, 405-418.
- (11) Woods, E. F. Aust. J. Biol. Sci. 1977, 30, 527-542.
 (12) Halsey, J.; Harrington, W. Biochemistry 1973, 12, 693-701.
- (13) Tsong, T.; Himmelfarb, S.; Harrington, W. J. Mol. Biol. 1983, 164, 431-450.
- Lehrer, S. J. Mol. Biol. 1978, 118, 209-226.
- Betteridge, D.; Lehrer, S. J. Mol. Biol. 1983, 167, 481-496.
- (16) Holtzer, M. E.; Holtzer, A.; Skolnick, J. Macromolecules 1983. 16, 173-180.
- (17) Holtzer, M. E.; Holtzer, A.; Skolnick, J. Macromolecules 1983, 16, 462-465.
- (18) Isom, L.; Holtzer, M. E.; Holtzer, A. Macromolecules 1984, 17, 2445-2447.
- (19) Potekhin, S.; Privalov, P. J. Mol. Biol. 1982, 159, 519-535.
- (20) Skolnick, J.; Holtzer, A. Macromolecules 1982, 15, 303-314.
- (21) Skolnick, J.; Holtzer, A. Macromolecules 1982, 15, 812-821.
- Skolnick, J.; Holtzer, A. Macromolecules 1983, 16, 1548-1550. (23)Caspar, D.; Cohen, C.; Longley, W. J. Mol. Biol. 1969, 41, 87-107
- (24) Mak, A.; Lewis, W.; Smillie, L. FEBS Lett. 1979, 105, 232-234.
- (25) Angeletti, R.; Bradshaw, R.; Wade, R. Biochemistry 1971, 10,
- (26) Holtzer, M. E.; Breiner, T.; Holtzer, A. Biopolymers 1984, 23, 1811-1833.
- (27) Holtzer, M. E.; Holtzer, A., unpublished work.
- (28) Hawkins, R. Ph.D. Thesis, Washington University, 1967.
- Perlmann, G.; Longsworth, L. J. Am. Chem. Soc. 1948, 70, 2719-2724; see especially Figure 1 and Table III.
- (30)Lowey, S.; Kucera, J.; Holtzer, A. J. Mol. Biol. 1963, 7, 234-244
- (31)Skolnick, J. Macromolecules 1983, 16, 1069-1083.
- (32) Skolnick, J. Macromolecules 1983, 16, 1763-1770.
- (33) Skolnick, J. Macromolecules 1984, 17, 645-658.

Carbon-13 Nuclear Magnetic Resonance Chemical Shifts of Poly(vinyl alcohol)

Alan E. Tonelli

AT&T Bell Laboratories, Murray Hill, New Jersey 07974. Received November 28, 1984

ABSTRACT: ¹³C NMR chemical shifts are calculated for the carbon nuclei in poly(vinyl alcohol) (PVOH) to the pentad and hexad levels of stereosequence for the methine and methylene carbons, respectively. This is achieved through utilization of the conformationally sensitive γ -gauche effect method which accounts for the magnetic shielding of those carbons in a gauche arrangement with their γ substituents. The RIS model of PVOH developed by Wolf and Suter is employed to calculate the frequencies of γ -gauche arrangements between methylene and methine carbons and between hydroxyl groups and methine carbons. Calculated chemical shifts are compared to the 100-MHz 13 C NMR spectra reported for PVOH in D₂O and dimethyl- d_6 sulfoxide by Ovenall. The relative orders of the observed methine pentad and methylene hexad ¹³C resonances agree with the calculated chemical shifts, in addition to agreement between the overall chemical shift dispersions measured and predicted for the methylene carbons. However, the 3-4 ppm spread observed for the methine resonances is severalfold larger than the dispersion in chemical shifts calculated for the methine carbons.

Introduction

The microstructural dependence of the ¹³C NMR spectra of vinyl polymers has been demonstrated to have a conformational origin.1 Polymer microstructure affects the local conformations²⁻⁵ of the polymer chain, which in turn determine the magnetic fields experienced by its carbon

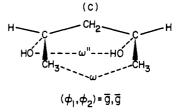
Figure 1. (a) Portion of a paraffinic hydrocarbon chain in the all-trans, planar zigzag conformation. (b) Newman projections along bond 2 in a illustrating the γ effect.

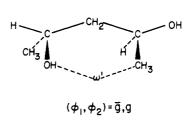
nuclei. The connection between vinyl polymer microstructure, conformation, and ¹³C chemical shifts is provided by the conformationally sensitive γ -gauche effect.¹

It has been observed 6-9 that when a carbon atom is proximal to a non-hydrogen γ substituent, which can occur if the intervening bond is in the gauche conformation (see Figure 1), then it is magnetically shielded and resonates upfield from carbons without γ substituents or those carbons that have γ substituents in the more distant trans arrangement. Consequently the populations of gauche and trans bonds in the vicinity of a carbon nucleus determine its relative chemical shift. Local polymer microstructure determines local polymer conformation and, through the conformationally sensitive γ -gauche effect, the ¹³C NMR chemical shifts of its constituent carbon nuclei.

The γ -gauche effect method has been successfully applied¹ to calculate the ¹³C NMR chemical shifts in a wide variety of vinyl homo- and copolymers. Polypropylene¹⁰ and its oligomers 11,12 and copolymers with ethylene 13,14 and vinyl chloride, 15 poly(vinyl chloride) and its oligomers 16 and copolymers with ethylene, 17,18 propylene, 15 and methyl acrylate, 19 polystyrene 20 and its oligomers, 21 poly(propylene oxide),²² and several fluoropolymers²³ have all been treated via the γ -gauche effect method to produce calculated ¹³C NMR chemical shifts which reproduce the observed spectra and their dependences on stereosequence, comonomer sequence, and defect structures, such as head-tohead monomer additions. The calculated ¹³C chemical shifts are valuable to the assignment of vinyl polymer ¹³C NMR spectra and lead to a detailed microstructural description of these polymer chains. In addition, because the γ -gauche effect method of calculating ¹³C NMR chemical shifts relies on a conformational description of the polymer to obtain gauche and trans bond populations, comparison of the calculated chemical shifts with the observed spectra serves to test the validity of the conformational model adopted for the polymer.

Ovenall²⁴ has recently reported the 100-MHz ¹³C NMR spectra of isotactic and atactic poly(vinyl alcohol) (PVOH) in D_2O and dimethyl- d_6 sulfoxide (Me₂SO- d_6) solutions and analyzed the spectra for microstructural details. Also recently, Wolf and Suter²⁵ have derived a rotational isomeric states (RIS) treatment of PVOH conformational characteristics. These two developments permit us to calculate the ¹⁸C chemical shifts expected for PVOH and to compare them with their observed spectra.


Calculation of ¹³C NMR Chemical Shifts


Wolf and Suter²⁵ have calculated the conformational

CH₃

$$(HO)H$$

$$(DH)H$$

Figure 2. (a) m(r) isomer of 2,4-pentanediol in the $(\phi_1,\phi_2)=0^\circ$, 0° or t,t conformation. (b) Newman projections along bond 1 illustrating the first-order interactions η and τ dependent upon ϕ_1 . (c) m 2,4-pentanediol in the $(\phi_1,\phi_2) = \bar{g},\bar{g}$ and \bar{g},\bar{g} conformations illustrating the second-order interactions ω , ω' , and ω'' .

energies of the PVOH "dimer" 2,4-pentanediol. They considered both the meso (m) and racemic (r) isomers and either ignored or included electrostatic interactions depending on whether or not the dimer was dissolved in H₂O or in apolar, aprotic solvents. Conformational energy maps were condensed into two PVOH intradiad matrices $\mathbf{U_m}''$ and U_{*}'' :

$$\begin{aligned}
& \phi_{1}/\phi_{2} \quad t \quad g \quad \overline{g} \\
& U_{m}^{"} = \frac{t}{g} \begin{vmatrix} \eta^{2}\omega^{"} & \eta & \eta\tau\omega^{'} \\ \eta & \omega & \tau\omega^{'} \\ \eta\tau\omega^{'} & \tau\omega^{'} & \tau^{2}\omega\omega^{"} \end{vmatrix} \\
& \phi_{1}/\phi_{2} \quad t \quad g \quad \overline{g} \\
& U_{r}^{"} = \frac{t}{g} \begin{vmatrix} \eta^{2} & \eta\omega^{'} & \eta\tau\omega^{''} \\ \tau\omega^{'} & 1 & \tau\omega \\ \eta\tau\omega^{''} & \tau\omega & \tau^{2}\omega^{'2} \end{vmatrix}
\end{aligned} \tag{1}$$

The elements of these matrices²⁶ are statistical weight parameters describing the interactions of nonbonded atoms. η and τ are first-order interactions between nonbonded atoms separated by three bonds and depend on only a single backbone rotation (see Figure 2a,b). ω,ω' , and ω'' describe the second-order interactions dependent on neighboring pairs of backbone rotations between atoms separated by four bonds. As an example, the 3,2 element

Table I
Wolf-Suter²⁵ Statistical Weight Parameters, $\alpha = \alpha_0 \exp[-E_s/RT], \text{ for PVOH}$

		α_0			$E_{\mathbf{a}}{}^a$		
α	I ^b	\mathbf{II}^c	III^d	I^b	\mathbf{II}^c	III^d	
η	1.18	0.97	1.02	-0.39	-0.96	-0.76	
τ	0.65	0.56	0.60	0.0	-0.27	-0.22	
ω	1.34	1.30	1.13	1.83	1.81	1.56	
ω'	1.03	0.90	1.03	0.85	0.79	0.84	
ω''	0.87	0.68	1.05	0.32	1.01	1.04	

^a Energies are in kcal/mol. ^b Coulombic interactions ignored. ^c Coulombic interactions included; partial charges on "pseudoatoms" X. ^d Coulombic interactions included; partial charges on O.

of $\rm U_m{}''$ is the product $\tau\omega'$ and occurs because in the $\rm \bar{g}$,g conformer there is a single first-order interaction corresponding to τ (see Figure 2b) and a single second-order interaction between CH₃ and OH (see Figure 2c). The values calculated for these statistical weight parameters by Wolf and Suter²⁵ are presented in Table I.

Three sets of statistical weight parameters are presented in Table I, because Wolf and Suter²⁵ applied three different methods to treat the Coulombic interactions in 2,4-pentanediol. The first approach, thought to be appropriate for H₂O and other polar, protic, strong hydrogen-bond-accepting solvents, completely ignores the electrostatic interactions. Coulombic interactions are considered in the other two methods, which differ only in the placement of partial charges, and are believed to be appropriate for aprotic solvents. Following Jorgensen,²⁷ the partial charge on O was equally distributed onto two pseudoatoms, X, representing the two lone-pair electron couples. In the other approach partial charges were placed on all of the atoms including O.

The RIS model obtained by ignoring Coulombic interactions reproduces the vicinal proton–proton coupling constants measured^{28–30} by ¹H NMR for 2,4-pentanediol in H₂O and the dimensions of atactic PVOH also measured³¹ in water. When the two RIS models derived for PVOH with inclusion of electrostatic interactions by Wolf and Suter²⁵ are modified to account for the formation of intramolecular hydrogen bonds in aprotic solvents (see Figure 2c), then the vicinal proton–proton couplings observed^{29,30} for 2,4-pentanediol in the aprotic solvents pyridine, chloroform, and methylene chloride are also reproduced. This modification involves the addition of -1 kcal/mol to the energy of interaction between adjacent OH groups, $\mathbf{E}_{\omega''}$, which in aprotic solvents, unlike H₂O, can only form intramolecular hydrogen bonds.

In combination with the interdiad matrix U', U_m'' and

$$\mathbf{U}' = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} \tag{2}$$

 ${\bf U_r}''$ can be used to calculate 26 bond conformation probabilities for PVOH as a function of stereosequence. From these bond conformation probabilities the frequencies, $F\gamma$, of γ -gauche interactions between methine and methylene carbons and between methine carbons and OH groups are obtained.

The ¹³C NMR chemical shifts are then calculated from

$$\delta_{\text{CH}_2} = F \gamma_{\text{CH}_2,\text{CH}} \gamma_{\text{CH}_2,\text{CH}} \tag{3}$$

$$\delta_{\rm CH} = F \gamma_{\rm CH, CH_2} \gamma_{\rm CH, CH_2} + F \gamma_{\rm CH, OH} \gamma_{\rm CH, OH} \tag{4}$$

where $\gamma_{a,b}$ is the shielding in ppm produced at carbon a by γ substituent b when a and b are in a gauche arrangement. From our experience with other vinyl poly-

Table II

13C NMR Chemical Shifts Calculated for the Methylene
Carbons in PVOH at the Hexad Stereosequence Level

		$\delta_{\mathrm{CH_2}}$, ppm	
hexad	I ^a	IIb	III_p
mrmrm	0.0	0.0	-0.09
rrmrm	-0.04	-0.02	-0.14
rrmrr	-0.07	-0.03	-0.18
mrrrm	-0.14	-0.04	-0.09
mrrrr	-0.19	-0.06	-0.12
rrrrr	-0.22	-0.07	-0.14
mmmrm	-0.45	-0.34	-0.08
rmmrm	-0.45	-0.32	-0.07
mmmrr	-0.49	-0.35	-0.11
rmmrr	-0.49	-0.33	-0.09
rmrrm	-0.62	-0.42	-0.09
mmrrm	-0.65	-0.43	-0.10
rmrrr	-0.66	-0.43	-0.12
mmrrr	-0.70	-0.44	-0.13
rmmmr	-0.81	-0.63	0.0
mmmmr	-0.84	-0.64	-0.01
mmmmm	-0.89	-0.66	-0.02
rmrmr	-1.09	-0.79	-0.09
mmrmr	-1.13	-0.81	-0.10
mmrmm	-1.19	-0.83	-0.10

 a Using RIS model 25 appropriate to $\rm H_2O.~^b$ Using RIS models 25 applicable to aprotic solvents.

Table III

13C NMR Chemical Shifts Calculated for the Methine
Carbons in PVOH at the Pentad Stereosequence Level

	δ _{CH} , ppm				
pentad	I ^a	Π_{ρ}	$\overline{\mathrm{III}^b}$		
rmmr	0.0	0.0	0.0		
mmmr	-0.07	-0.04	-0.05		
mmmm	-0.17	-0.10	-0.11		
rmrr	-0.43	-0.37	-0.61		
rmrm	-0.48	-0.49	-0.68		
mmrr	-0.50	-0.50	-0.66		
mmrm	-0.57	-0.54	-0.74		
rrrr	-0.76	-0.86	-1.20		
mrrr	-0.81	-0.90	-1.28		
mrrm	-0.88	-0.94	-1.36		

 a Using RIS model 25 appropriate to H_2O . b Using RIS models 25 applicable to aprotic solvents.

mers^{1,10-23} and by comparing the ¹³C NMR chemical shifts³² of aliphatic alcohols and the corresponding alkanes, we expect $\gamma_{\text{CH}_2\text{CH}} \approx \gamma_{\text{CH},\text{CH}_2} \simeq -5$ ppm and $\gamma_{\text{CH},\text{OH}} \approx -7$ ppm. ¹³C NMR chemical shifts were calculated for the methine carbons belonging to all possible pentad stereosequences and hexad stereosequences were considered for the methylene carbons.

Results and Discussion

Tables II and III present the calculated ¹³C NMR chemical shifts for the methylene carbons to the hexad level and for the methine carbons to the pentad level of PVOH stereosequence. All chemical shifts were calculated at 50 °C, the temperature employed by Ovenall²⁴ to record the ¹³C NMR spectra of PVOH. In Figures 3 and 4 the ¹³C chemical shifts observed for the methylene carbons in atactic PVOH dissolved in D₂O and Me₂SO-d₆, respectively, by Ovenall²⁴ are compared to those calculated by using the PVOH RIS models developed by Wolf and Suter.²⁵

The sample of atactic PVOH studied by Ovenall²⁴ was found to have a Bernoullian stereosequence characterized by $P_{\rm m}=0.46$, i.e., 46% m diads and 54% r diads. Yet in D_2O the more intense trio of hexad resonances centered at 44.82 ppm was assigned to the rmr centered hexads while the less intense trio centered at 45.01 ppm was as-

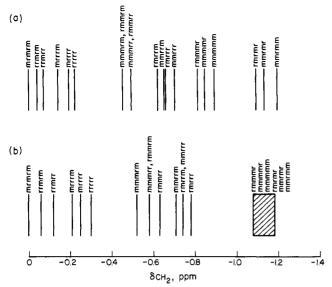


Figure 3. Comparison of ¹³C chemical shifts in the form of stick spectra for the CH₂ carbons in atactic PVOH, where the calculated chemical shifts are given in a and those observed in D_2O by Ovenall²⁴ are presented in b.

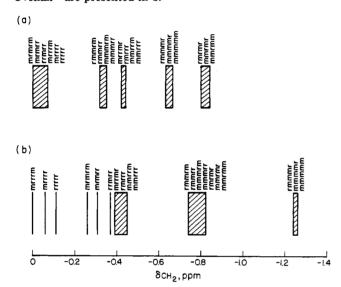


Figure 4. Same as Figure 3 except replace "D₂O" with Me₂SO-d₆.

signed to the rrr centered hexads by Ovenall.24 Because the PVOH studied by Ovenall²⁴ is richer in r diads compared to m diads, a more consistent assignment of these two sets of resonances would be xrmry hexads centered at 45.01 ppm and xrrry hexads centered at 44.82 ppm. For the same reason, we believe a reversal in the assignments made by Ovenall²⁴ for the mrr and mmr centered hexad resonances is also reasonable. These modifications in the assignment of methylene carbon resonances in the ¹³C NMR spectrum of atactic PVOH dissolved in D₂O have been incorporated in Figure 3b.

With the exception of a 0.1-0.2 ppm downfield shift of the resonances calculated for mmm centered methylene carbon hexads compared to the observed resonances, there is excellent agreement between the methylene ¹³C chemical shifts calculated and observed for atactic PVOH in D₂O. Both the observed order of resonances and the overall dispersion in methylene carbon chemical shifts are closely reproduced by the calculated chemical shifts. This agreement lends support to Wolf and Suter's 25 RIS model for PVOH dissolved in H₂O (I) and suggests that the shielding of a methylene carbon nucleus by a methine carbon in PVOH is similar ($\gamma_{\rm CH_2,CH} = -5$ ppm) to that

experienced by the methylene carbons in other vinyl polymers.1,10-23

Methine carbon resonances observed for PVOH in D₂O solution follow the same order as the chemical shifts calculated for the methine carbons which are presented in Table III. However, while the calculated overall dispersion is ~1 ppm, the observed methine resonances span a ~3 ppm range. For the methine carbon resonances observed by Ovenall²⁴ in Me₂SO-d₆ the order of resonances is the same as that calculated for the methine carbons in aprotic solvents using the Wolf-Suter²⁵ RIS models for PVOH (II and III) (see Table III), which account for intramolecular electrostatic and hydrogen-bonding interactions. Again the calculated dispersion in methine carbon chemical shifts 1-1.4 ppm is greatly exceeded by the observed range of 4 ppm.

In Figure 4 we compare the methylene carbon chemical shifts observed for PVOH in Me₂SO-d₆ by Ovenall²⁴ to those calculated by using the PVOH RIS model II of Wolf and Suter.²⁵ We do not plot the methylene carbon chemical shifts calculated with RIS model III, because all 20 hexad resonances fell within the narrow range of less than 0.2 ppm. Clearly the agreement between the chemical shifts calculated and observed for the methylene carbons in Me₂SO-d₆ is not as good as that found in D₂O (compare Figures 3 and 4). The order of the methylene chemical shifts calculated for D₂O (I) and Me₂SO-d₆ (II) are the same, but there is a 30% reduction in the overall spread of methylene carbon chemical shifts calculated for Me_2SO-d_6 compared to those calculated for D_2O as solvent.

Experimentally, on the other hand, the overall observed spreads in the methylene carbon chemical shifts are nearly identical for D₂O and Me₂SO-d₆. Changing solvent from D₂O to Me₂SO-d₆ causes the rrr centered hexad resonances to move downfield from those of the rmr centered hexads, the mrr centered hexads to resonate downfield from the mmr centered hexads, and the mrm and mmr centered hexad resonances to overlap. Substitution of Me₂SO-d₆ for D₂O as solvent results in a downfield shift of resonances belonging to the rrr, mrr, and mrm centered hexads, an upfield shift of rmr and mmr centered hexad resonances, and no change for the mmm centered hexad resonances.

We concur with Ovenall, 24 who attributed the changes observed in the ¹³C NMR spectra of atactic PVOH with solvent to differences in the average polymer chain conformation in the solvents D₂O and Me₂SO-d₆. The RIS models for PVOH in D₂O (I) and Me₂SO-d₆ (II) derived by Wolf and Suter²⁵ do predict different average conformations for PVOH in these solvents. They do not, however, predict the observed crossover among several methylene carbon residues when changing solvent from D_2O to Me_2SO-d_6 .

Irrespective of stereosequence, the fraction of gauche bonds, which is directly related to the calculated δ_{CH_0} 's (see eq 3), is found to be higher for PVOH in D₂O compared to Me_2SO-d_6 as solvent. In fact, for all methylene carbon hexads the calculated frequency of γ -gauche interactions between the methylene and methine carbons ($F\gamma_{\text{CH}_2,\text{CH}}$, see eq 3) is 0.2 less in Me₂SO- d_6 than in D₂O. This explains the contraction in the overall spread of calculated methylene carbon chemical shifts when passing from D2O to Me₂SO-d₆ (see Figures 3a and 4a), and also accounts for the experimentally observed upfield shift of 1 ppm $[(\Delta F \gamma_{\text{CH}_2,\text{CH}})(\gamma_{\text{CH}_2,\text{CH}}) = (0.2)(-5 \text{ ppm}) = -1 \text{ ppm}]$ for the entire methylene carbon region when passing from Me_2SO-d_6 to D_2O .

Obviously for the methine pentads $F_{\gamma_{\text{CH,CH}_2}}(D_2O)$ is 0.2 > $F\gamma_{\text{CH,CH}_2}(\text{Me}_2\text{SO-}d_6)$. In addition $F\gamma_{\text{CH,OH}}(D_2\text{O})$ is 0.2

 $< F_{\gamma_{\text{CH,OH}}}(\text{Me}_2\text{SO-}d_6)$, resulting in calculated methine carbon chemical shifts which are nearly independent of solvent. This solvent independence of the average location of the PVOH methine carbon region is also observed in the ¹³C NMR spectra recorded for atactic PVOH by Ovenall. 24

The following expressions describe the calculated overall spreads in methine carbon pentad ¹³C chemical shifts; in D₂O (I) $\Delta\delta_{\rm CH,OH}=0.28\gamma_{\rm CH,OH}$ –0.21 $\gamma_{\rm CH,CH_2}$ and in Me₂SO- d_6 (II) $\Delta\delta_{\rm CH}=0.25\gamma_{\rm CH,OH}$ –0.16 $\gamma_{\rm CH,CH_2}$. In order to match the observed spreads (3 and 4 ppm), $\gamma_{\text{CH,OH}}$ must be at least -15 ppm. There is no indication from the ¹³C NMR spectra³² of alkanes and aliphatic alcohols that the shielding produced at a carbon nucleus by a γ -gauche OH group can attain this magnitude. We therefore conclude that in addition to γ -gauche shielding effects, the ¹³C chemical shifts of the carbon nuclei in PVOH are affected by some additional mechanism, especially the methine carbons.

An obvious candidate would appear to be hydrogen bonding. When a methine carbon in PVOH is gauche to its γ OH group, it becomes possible to form a hydrogen bond between its own OH and the OH in the γ position. This hydrogen bond would likely affect the methine carbon chemical shift, and might produce a significant shielding over and above that resulting from the gauche arrangement of its γ OH, leading to an apparently larger $\gamma_{\rm CH,OH}$. Whether or not this mechanism is feasible, it still remains to explain the observed crossover of several methylene carbon resonances when changing solvent from D₂O to Me_2SO-d_6 .

Our analysis of the ¹³C NMR spectra of atactic PVOH recorded in D₂O and Me₂SO-d₆ by Ovenall²⁴ using the γ-gauche effect method of calculating ¹³C chemical shifts lends support to the RIS models developed for PVOH by Wolf and Suter.²⁵ Model I, which ignores electrostatic interactions, appears to be appropriate to PVOH dissolved in D₂O. Modeling the electrostatic interactions after the method of Jorgensen,²⁷ where partial charges are assigned to pseudoatoms at the positions of the lone electron pairs on the oxygen atom, and attributing a 1 kcal/mol stabilization for second-order OH—OH interaction (ω'') (see Figure 2c) leads to model II, which seems to adequately describe the conformations of PVOH in aprotic solvents like Me₂SO-d₆. On the basis of the near independence of methylene carbon chemical shifts to PVOH stereosequence when calculated with model III, we conclude that treating the electrostatic interactions by placing the partial charge

for O directly on the oxygen atoms is not appropriate. The differences in the ¹³C NMR spectra of atactic PVOH when changing solvent from D₂O to Me₂SO-d₆ observed by Ovenall²⁴ are attributable to differences in the average PVOH chain conformations in these solvents. It

appears that the Wolf-Suter RIS models I and II satisfactorily account for the average PVOH conformations in D₂O and Me₂SO-d₆, respectively. These conclusions were permitted by comparing the ¹³C chemical shifts calculated with the γ -gauche effect method¹ to the observed ¹³C NMR spectra of PVOH, and serve to demonstrate the utility of the method in the study of vinyl polymer microstructures and conformational characteristics.

References and Notes

- (1) A. E. Tonelli and F. C. Schilling, Acc. Chem. Res. 14, 233
- P. J. Flory and J. D. Baldeschwieler, J. Am. Chem. Soc., 88, 2873 (1966).
- (3) P. J. Flory and Y. Fujiwara, Macromolecules 2, 327 (1969).
- (4) Y. Fujiwara and P. J. Flory, Macromolecules, 3, 43 (1970).
 (5) D. Y. Yoon and P. J. Flory, Macromolecules, 10, 562 (1977).
- (6) H. Spiescke and W. G. Schneider, J. Chem. Phys., 35, 727
- (7) D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984
- (8) L. P. Lindeman and J. Q. Adams, Anal. Chem., 43, 1245 (1971).
- (9) F. A. Bovey, "Proceedings of the International Symposium on Macromolecules, Rio de Janerio, July 26-31, 1974", E. B. Mano, Ed., Elsevier, Amsterdam, 1975, p 169.
- (10) F. C. Schilling and A. E. Tonelli, Macromolecules, 13, 220 (1980).
- (11) A. E. Tonelli, Macromolecules, 11, 565 (1978).
- (12) A. E. Tonelli, Macromolecules, 12, 82 (1979).
- (13) A. E. Tonelli, Macromolecules, 11, 634 (1978).
- (14) A. E. Tonelli, Macromolecules, 12, 255 (1979).
- (15) A. E. Tonelli and F. C. Schilling, Macromolecules, 17, 1946 (1984)
- (16) A. E. Tonelli, F. C. Schilling, W. H. Starnes, Jr., L. Shepherd, and I. M. Plitz, Macromolecules, 12, 28 (1979).
- (17) A. E. Tonelli and F. C. Schilling, Macromolecules, 14, 79 (1981)
- (18) F. C. Schilling, A. E. Tonelli, and M. Valenciano, Macromolecules, 18, 356 (1985).
- (19) A. E. Tonelli and F. C. Schilling, work in preparation. (20) A. E. Tonelli, Macromolecules, 16, 604 (1983).

- (21) A. E. Tonelli, Macromolecules, 12, 252 (1979).
 (22) F. C. Schilling and A. E. Tonelli, work in preparation.
- (23) A. E. Tonelli, F. C. Schilling, and R. E. Cais, Macromolecules,
- (24) D. W. Ovenall, Macromolecules, 17, 1459 (1984).
- (25) R. M. Wolf and U. W. Suter, Macromolecules, 17, 669 (1984).
- (26) P. J. Flory, "Statistical Mechanics of Chain Molecules", Interscience, New York, 1969, Chapter III.
- W. L. Jorgensen, J. Am. Chem. Soc., 102, 543 (1980).
- (28) S. Fujiwara, Y. Fujiwara, K. Kujii, and T. Fukuroi, J. Mol.
- Spectrosc., 19, 294 (1966). T. Fukuroi, Y. Fujiwara, S. Fujiwara, and K. Fujii, Anal. Chem., 40, 879 (1968).
- (30) D. Doskočilova, J. Stokr, E. Votavová, B. Schneider, and D., Lim, J. Polym. Sci., Part C, 16, 2225 (1967).
- (31) See the derivation of PVOH dimensions presented in ref 25 and references cited therein.
- J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, 1972, Chapter 5.